
NORM GROWTH FOR THE BUSEMANN COCYCLE

THIBAUT DUMONT

Abstract. Using explicit methods, we provide an upper bound to the norm of the
Busemann cocycle of a locally finite regular tree X, emphasizing the symmetries of
the cocycle. The latter takes value into a submodule of square summable functions on
the edges of X, which corresponds to the Steinberg representation for rank one groups
acting on their Bruhat-Tits tree. The norm of the Busemann cocycle is asymptotically
linear with respect to square root of the distance between any two vertices. Indepen-
dently, Gournay and Jolissaint [10] proved an exact formula for harmonic 1-cocycles
covering the present case.
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1. Introduction

We present a method from the author’s doctoral dissertation [7]. Therein, the study
of the norm growth of the cocycles introduced by Klingler in [12] is transported, in rank
one, to the geometric Question 1 below.

Let q ≥ 2 be an integer and X be a q+ 1 regular tree with vertex set also denoted X
by abuse, edge set E, and visual boundary ∂X. The Busemann cocycle B : X2 → C(∂X)
is given by the usual formula

(1) B(x, y)(ξ) = lim
z→ξ

d(y, z)− d(x, z),

where d is the metric on X giving length 1 each edge. Let B̄ denote the composition
with the quotient map C(∂X)→ C(∂X)/C modding out constant functions.

In a context of Bruhat-Tits building [13], Klingler introduces a transform named after
Poisson which, in the present setting, is a map P : C(∂X)→ CE defined by integration
against an Aut(X)-equivariant field ν : E→M(∂X) of signed measures on ∂X:

(2) Pφ(e) :=

∫
∂X

φ dνe,

where φ ∈ C(∂X) and e ∈ E, (see Section 2.3 for precise definitions). The Poisson
transform is Aut(X)-equivariant, factors through C(∂X)/C, and maps locally constant
functions into `2(E) (Proposition 5). This was first proved by Klingler for Bruhat-Tits
trees [13], where a similar statement is proved for more general Bruhat-Tits buildings
in relation to the Steinberg representation as explained in the motivations below.
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Question 1. Find an upper bound for the norm ‖PB̄(x, y)‖`2(E) depending only on x, y
(and q).

The present paper exposes the solution developed in [7, Chap. 4] which emphasis the
symmetries of the cocycle and hopes to inspire an approach to the higher rank case
started in [7, Chap. 2–3].

For a fixed q, the norm depends only on d(x, y) thanks to the equivariance of the
construction, and one may ask to determine the asymptotic growth type of ‖PB̄(x, y)‖
as d(x, y)→∞. The difficulty lies into the search of an upper bound. In fact, we prove:

Theorem 2. For every integer q ≥ 2, there are constants C,K > 0 such that

4 d(x, y) ≤ ‖PB̄(x, y)‖2 ≤ Cd(x, y) +K,

for all x, y ∈ X, with constants given by:

C =
8(q + 1)2

(q − 1)2
and K =

16q2(2q + 1)

(q − 1)3(q + 1)
.

In an independent work, Gournay and Jolissaint obtained a formula for the norm of
harmonic cocycles [10, Theorem 1.2] which subsume our estimate. Indeed, since the
average of B(x, y) over the neighbors y of x is proportional to the indicator function

on ∂X, the cocycle B̄ : X2 → C(∂X)/C is harmonic(1), i.e. satisfies
∑

y∼x B̄(x, y) = 0.

Therefore PB̄ yields an harmonic 1-cocycle of Aut(X) for its regular representation into
`2(E). Viewing it as an inhomogeneous 1-cocycle, their result implies

Theorem 3 (Gournay-Jolissaint [10, Theorem 1.2]). For every integer q ≥ 2, there are
constants C ′,K ′ > 0 such that

‖PB̄(x, y)‖2 = C ′d(x, y)−K ′(1− q−d(x,y)),

for all x, y ∈ X.

The discrete Laplacian plays a central role in establishing the above formula as it is
invertible in regular trees.

1.1. On the proof of Theorem 2. Let e ∈ E be an oriented edge of X and let Aut(X)e
denote its stabilizer. The measure νe is defined on the partition ∂X = Ω+

e t Ω−e into
Aut(X)e-orbits as the difference ν+

e − ν−e of the probability measures supported on Ω+
e

and Ω−e respectively and proportional to a fixed visual measure. For definiteness we take
Ω−e to be the shadow of t(e), the target of e, casted by light emanating from o(e), the
origin of e as in Figure 1. One should think of e as being the neck of an hourglass with
sand flowing from Ω+

e through e in the direction of Ω−e .
By construction the map e 7→ νe is equivariant under any automorphism of X and

if ē denote the reverse orientation then νē = −νe. Thus the Poisson transform satisfies
Pφ(ē) = −Pφ(e). Each geometric edge has therefore a preferred orientation e for which
PB̄(x, y)(e) is non-negative; Figure 2 illustrates this globally. In that case, the subset
of ∂X where B(x, y) takes its maximum, namely d(x, y), has ν+

e -measure contributing
more to the value of PB̄(x, y)(e) than its ν−e -measure. Symmetrically, the set where
B(x, y) is minimal and equal to −d(x, y) will have larger ν−e -measure. For the latter
signs cancel which explains in principle the positivity of the poisson transform for this
preferred orientation. One notices the central role of the barycenter of [x, y] in the
symmetry.

(1)This is distinct from the fact that
∑
o(e)=x νe = 0, which implies that P ranges in the space of

harmonic functions on E, see Section 2.3.
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Figure 1. An oriented edge e.

x y

Figure 2. The preferred orientations.

The next step derives an integration formula (Propositions 9 and 11) for

PB̄(x, y)(e) =

∫
∂X

B(x, y) dνe,

which exhibits a symmetry around the barycenter of [x, y]. More precisely every edge e
has an associated edge e′, which is aligned with [x, y] if and only if e is so, whose position
relatively to [x, y] is opposite to the barycenter, and for which the integration formula
shows PB̄(x, y)(e) = PB̄(x, y)(e′), see Corollary 16. Using this symmetry, one averages
the aforementioned formulae for PB̄(x, y)(e) and PB̄(x, y)(e′) to obtain a spherical re-
arrangement of the terms into non-negative quantities (Sections 4.1 and 4.2) and in turn
yields the relevant upper bounds for PB̄(x, y)(e), see equations (8) and (9).

The upper bound of Theorem 2 is obtained by observing that the sum of PB̄(x, y)(e)2

over the edges not on [x, y] is bounded independently of x, y and that each edge on [x, y]
contributes a uniformly bounded quantity to the `2-norm, see Section 3.3.

The spherical rearrangement of Section 4.1 also provides the lower bound by applying
Cauchy-Schwarz to the indicator function of the edges of [x, y] pointing towards y.

1.2. Motivations. Let G be a group with a length function L, typically the word length
function of a compact generating set of a locally compact group, and let V be a Banach
space endowed with a linear isometric action of G. In this setting, cohomology theories
obtained by imposing a growth condition (with respect to L) on the norm of cocycles
have been extensively studied in recent decades and have proven themselves powerful
refinements of group cohomology, e.g. bounded cohomology [11], [15], or polynomially
bounded cohomology [16]. The polynomial theory has notable applications to the `1-
analogue of the Novikov conjecture [17].

Our result represents the first step of a program initiated in [7] aiming at determining
the norm growth of the natural cocycles introduced by Klingler [12] for some (almost-
simple) algebraic groups over a non-Archimedean local field of characteristic 0 and their
Steinberg representation. The latter, introduced by Matsumoto [14] and Shalika [19], is
often called the special representation as in [3], [2].
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For simplicity, we focus on the special linear group G = SLn(Qp) over a p-adic
field, n ≥ 2. Among the (admissible) irreducible pre-unitary representation of G, the
Steinberg representation St is the only non-trivial coefficient module for which the co-
homology of G does not vanish identically in positive degree. This result was implicit
in the work of Borel [1] for large p using ideas of Garland [9], but was first proved in
full generality by Casselman [6]. More precisely, the only non-vanishing positive degree
is the rank r = n − 1 of G for which Hr(G,St) = C. In [12], Klingler geometrically
builds an r-cocycle volG whose class spans the r-cohomology [12, Théorème 1]. Later
Monod [15, Problem P] suggested volG should be a good candidate to look for polyno-
mial growth phenomenon. He is actually interested in ‘quasifying’ volG to obtain a new
polynomially bounded cohomology class of degree r+1 which remains an open question.

To study the norm of the cocycle volG, one needs to understand the G-invariant
inner product of the Steinberg representation. The Poisson transform [13] relative to an
Iwahori subgroup B of G yields an explicit isomorphism of (admissible) representations
between St and a submodule H ⊂ L2(G/B) of (smooth) harmonic functions. Borel–
Serre [3, §5.10] had earlier established this isomorphism using abstract arguments leaving
no hope for explicit computations; the same holds for the argument in [2, §6].

Both volG and the Poisson transform have geometric description using the Bruhat-
Tits building of G. Following Klingler [12] [13], the cocycle volG for G = SL2(Qp)
corresponds to the Busemann cocycle B̄ of the Bruhat-Tits tree of G, whereas the
Poisson transform relative to an Iwahori subgroup (edge stabilizer) is the map P studied
here. More precisely, fixing a base vertex x, the map volG(g, g′) := B̄(gx, g′x) defines
Klingler’s homogeneous 1-cocycle for Aut(X) valued into the representation C∞(∂X)/C
of locally constant functions modulo constants. The latter is pre-unitary because it is
isomorphic, under the Poisson transform, to a submodule of `2(E), and identifies to St
when restricted to G. This geometric description allows to somewhat ignore the role of
G, and the definitions extend to arbitrary regular trees. More generally if X is a regular

locally finite Euclidean building, e.g. as studied in [7] for type Ã2, similar constructions
can and will be considered in future work.

1.3. Acknowledgements. The author is indebted to many people and organizations
which supported the present research, and wishes to thank them warmly. Mainly per-
formed at the EPF Lausanne, the project was funded by the Swiss Confederation and
the ERC Advance Grant 267635 attributed to Nicolas Monod. The author’s stay at the
University of Utah, which we thank for its generous hospitality, lead to the completion of
the present work under the sponsorship of the Swiss NSF via an Early Postdoc.Mobility
grant (Project 171852, Cohomology and Bruhat-Tits Buildings).

We thank also Maxime Gheysens for discussions, notably leading to the proof of the
lower bound in Theorem 2. Finally, we benefited greatly from the supervision of Nicolas
Monod who suggested this research topic; we are profoundly grateful.

2. Preliminaries

We start with some preliminaries regarding the Poisson transform and the Busemann
cocycle. Our conventions for graphs and trees follow Serre’s book [18].

Let q ≥ 2 be an integer and X a (q + 1)-regular tree. In addition X comes with an
extremity map (o, t) : E → X × X, assigning to each edge e its origin o(e) and target
t(e), and an orientation reversing map e 7→ ē. A geometric edge is understood to be a
set of the form {e, ē}.
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We identify the tree X with its geometric realization and endow it with the metric
for which geometric edges have length 1. We denote SR(x) the sphere about x of radius
R ∈ [0,∞). The visual boundary of X, denoted ∂X, is the set of asymptotic classes of
geodesic rays r : [0,∞)→ X. Endowed with the cone topology, ∂X is compact metriz-
able and totally disconnected; the basis for the topology being given by the following
family of closed-open subsets:

(3) Ωx(z) := {ξ ∈ ∂X | z sit on the geodesic ray from x to ξ},

with x, z ∈ X. The set Ωx(z) is called the shadow of z from x (or from light emanating
from x). The visual boundary ∂X is also homeomorphic to the projective limit of the
system

{Sn+1(x)→ Sn(x) | n ∈ N},
for any base point x ∈ X, where each sphere is given the discrete topology.

2.1. Busemann Cocycle. For every pair of vertices (x, y) ∈ X2, the function z 7→
d(y, z) − d(x, z) can be extended to the visual boundary via (1). The induced map
B(x, y) : ∂X → R is continuous and called the Busemann cocycle, a terminology justified
by the 1-cocycle identity:

B(x, z) = B(x, y) +B(y, z).

The Busemann cocycle is a locally constant function on ∂X as we now see by identifying
its values and level sets. We consider two fixed vertices x and y. Given ξ ∈ ∂X, let r
be the unique geodesic ray from x to ξ. By definition, the value of Busemann cocycle
at ξ ∈ ∂X is given by:

B(x, y)(ξ) = lim
t→∞

d(y, r(t))− d(x, r(t)) = lim
t→∞

d(y, r(t))− t.

The argument of the limit is in fact constant as soon as r(t) reaches the geodesic ray r′

joining y to ξ. More precisely,

B(x, y)(ξ) = t′ − t

for all t, t′ ≥ 0 which satisfy r′(t′) = r(t). Set d := d(x, y) and k := d(x, r′), then

B(x, y)(ξ) = d− 2k.

Consider the geodesic segment σ : [0, d] → X from x to y; the level set for the above
value is given by:

B(x, y)−1(d− 2k) = {ξ | B(x, y)(ξ) = d− 2k} = Ωx(σ(k)) r Ωx(σ(k + 1)),

for integers 0 ≤ k < d, and equals Ωx(y) otherwise.

2.2. Visual measure νx and Radon-Nikodym derivative. The well-known proba-
bility measures νx on ∂X were, to the best of our knowledge, introduced by Cartier in
[4] and [5, §8] as tree analogues of the visual measures on the visual boundary of the
hyperbolic plane. We refer also to the book of Figà-Talamanca and Nebbia [8, Chap II]
for visual measures. Fix a base vertex x, the Borel probability measure νx, called visual
measure at x, can be defined as the projective limit of the uniform probability measures
on the spheres Sn(x), with n ∈ N. In other words, it is the unique measure on ∂X
satisfying

νx(Ωx(z)) = card(Sn(x))−1 =
1

qn−1(q + 1)
,
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for all z ∈ Sn(x) and all n ∈ N∗. Different base points x, y ∈ X yield absolutely
continuous measures for which the Radon–Nikodym derivative is given by:

dνx
dνy

(ξ) = qB(x,y)(ξ),

for all ξ ∈ ∂X. By construction, x 7→ νx is equivariant under automorphisms of X.

2.3. Visual measure νe and Poisson transform. We now detail the construction of
the signed measure νe on ∂X associated to an oriented edge e ∈ E. We merely translate
into a geometric language the Poisson transform relative to Iwahori subgroups and its
associated measures developed by Klingler in [13].

The field of measures e 7→ νe constructed below is naturally Aut(X)-equivariant and
satisfies νē = −νe. First, we consider ν+

e , the Borel probability measure supported on
Ω+
e := Ωt(e)(o(e)) (see (3) for the notation) obtained from νo(e) by restriction and scaling

as follows:
q

q + 1
· ν+
e = νo(e)|Ω+

e
.

On the complement of Ω+
e , we define ν−e to be the Borel probability measure on Ω−e :=

Ωo(e)(t(e)) given by:

1

q + 1
· ν−e = νo(e)|Ω−

e
.

Finally, we define the signed measure associated to e to be νe := ν+
e − ν−e . The Poisson

transform Pφ : E → C of a continuous function φ : ∂X → C is defined by integration,
see equation (2).

Remark 4. If φ is constant then Pφ = 0, hence the Poisson transform of a function
depends only on its class modulo constant functions.

The Poisson transform ranges in the space of alternate harmonic functions on E. For
if x ∈ X, we have ∑

o(e)=x

νe = 0, thus
∑
o(e)=x

Pφ(e) = 0.

We reproduce and adapt the argument from [7, Proposition 2.3.6] showing that locally
constant functions have square summable Poisson transform.

Proposition 5. Let φ be a locally constant function on ∂X, then Pφ is in `2(E).

Proof. By compactness, φ takes only finitely many values and consequently there is a
finite disjoint open cover {Ωx(u) | u ∈ SR(x)} into small shadows, R-distant from a base
point x, on each piece of which φ is constant. Let K be the pointwise stabilizer of the
ball BR(x). Then φ is K-invariant and so is Pφ. Each tree Tu rooted u ∈ SR(x) in the
complement of BR(x) has visual boundary Ωx(u) and is acted upon by K with quotient
a ray. Thus Pφ is constant on each level of Tu provided all edges point toward u. Using
harmonicity, the sum of Pφ(e) over q adjacent edges of Tu on level j ≥ 1 equals q times
the value of their common ancestor edge of level j − 1, again provided the edges point
toward u. Then a geometric series argument on each ray shows that

‖Pφ‖`2(E) ≤ C max
d(e,x)≤R+1

|Pφ(e)|,

where C depends on R and q only. �
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3. The proof

This section aims at proving the following estimate of the `2(E)-norm of the Poisson
transform of B(x, y):

(4)
∑
e∈E

PB(x, y)(e)2 ≤ Cd(x, y) +K,

where C,K are the constants of Theorem 2 depending only on q. The lower bound of
the theorem is proved at the end of Section 4.1

Here is a detailed outline of the proof.
Firstly, in Section 3.1, the oriented edges are parametrized according to their position

relatively to x and y. We distinguish edges aligned with the geodesic segment [x, y] from
those not, the projection of the latter onto [x, y] is well defined and equals neither x
nor y. The distances of their extremities to x and y are implicitly used as parameters.

Secondly, we obtain the integration formulae for PB(x, y)(e) (Propositions 9 and 11)
depending only on the aforementioned parameters (and q). The strategy is to decompose
the boundary ∂X into countably many disjoint open sets whose νe-measure is easily
computed, on each of which B(x, y) is constant, and then apply countable additivity of
the measure. In general, removing a finite subtree of X yields a decomposition of ∂X
into finitely many disjoint open subsets, the boundaries of the connected components of
the resulting forest. For instance, the level sets of B(x, y) are obtained by removing the
segment [x, y], see Section 2.1. On the other hand, Section 2.3 defines νe by removing
the geometric edge {e, ē} and looking at the resulting partition ∂X = Ω+

e tΩ−e . Suppose
there is a geodesic σ containing e and [x, y], the aligned case, one could naively remove
their convex hull and obtain a finite open partition of ∂X. However the resulting finite
sum representing PB(x, y)(e) has no obvious closed form. Instead, picking σ : R→ X to
be a geodesic line, with σ(0) = x say, we obtain a countable partition of ∂X indexed over
Z into open sets with explicit νe-measure (Lemma 8) and on which B(x, y) is constant
and given by the piecewise affine function f defined in (6). The case where e is not
aligned with [x, y] requires more work, but follows similar principles, see Section 3.2.

Thirdly, from the integration formula emerges a symmetry described in the introduc-
tory Section 1.1. Averaging the integration formulae of two symmetric edges provides
a rearrangement into non-negative terms spherically distributed around a point. The
averaging technique depends again on whether e is aligned with [x, y] or not (Section
4.1 and Section 4.2 respectively). This is achieved in the last part of the paper.

Finally, we gather in Section 3.3 the above ingredients to complete the proof of in-
equality (4).

3.1. Parametrization of the edges. We fix x, y ∈ X and an edge e ∈ E. Without
loss of generality we may assume d := d(x, y) is at least 2. The possible configurations
of x, y, e in X fall into two cases depending implicitly only on the distances between x,
y and the extremities of e:

(A) e is aligned with [x, y],
(B) e is not aligned with [x, y].

In (A), we shall always assume that there is a geodesic line σ : R → X such that
x = σ(0), y = σ(d) and (o(e), t(e)) = (σ(i), σ(i + 1)) for some i ∈ Z. This corresponds
to the preferred orientation of e discussed in Section 1.1.

On the other hand, we choose for (B) to orientate e toward [x, y], hence we assume the
existence of a geodesic segment τ : [0, j]→ X such that (o(e), t(e)) = (τ(0), τ(1)) and for
which τ(j) is the projection of e onto [x, y]. This orientation does not necessarily give
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positiveness of the Poisson transform of B(x, y), but it provides a uniform treatment
of (B). In this case τ(j) 6= x, y and one may extend τ to a geodesic τ : (−∞, j] → X.
When q ≥ 3, one can extend τ further into a geodesic line τ : R→ X intersecting [x, y]
only at τ(j), forming a cross with [x, y]. However if q = 2, it is not possible to do so;
this case gets special attention in Remark 12. We therefore assume q ≥ 3. Like in case
(A), we fix a geodesic σ : R → X with x = σ(0), y = σ(d), so that the projection of e
onto [x, y] is σ(i) = τ(j), for some integer 1 < i < d.

Definition 6. We say that an oriented edge e has parameter i ∈ Z if it is described
as in case (A) above with (o(e), t(e)) = (σ(i), σ(i + 1)). Otherwise, e is said to have
parameters (i, j), with 1 < i < d and j ≥ 1, as in case (B), and its projection onto [x, y]
corresponds to σ(i) = τ(j).

Lemma 7. The number of edges with parameter i ∈ Z is given by:

n(i) =


q|i| if i < 0,

1 if 0 ≤ i < d,

qi−d if d ≤ i,

whereas there are n(i, j) = (q− 1)qj−1 edges with parameters (i, j), for all 1 ≤ i ≤ d− 1
and j ≥ 1. �

3.2. Integration formulae. In this section, we derive the integration formula for
PB(x, y)(e) which depends only on the parameters of e. With the parametrizations
of the previous section, two countable partitions of ∂X are obtained by removing the
geodesic lines σ and τ .

The first partition {Ωσ
k | k ∈ Z} is obtained by removing only σ and is used for the

aligned case (A). For every k ∈ Z, let

Ωσ
k :=

⊔
z∈S1(σ(k))
z 6=σ(k±1)

Ωσ(0)(z).

Equivalently, we remove from X the open geometric edges of the geodesic line σ and
consider the visual boundary components of the resulting forest. Of course, the end
points of σ are νe-null sets and can be ignored. In the right hand side, the base point
σ(0) = x can be replaced by any node of σ.

The νe measure of Ωσ
k can be computed using the Sections 2.2 and 2.3. Suppose

Ωσ
k ⊂ Ω+

e , the intuition is that of one starts at the origin o(e) = σ(i) of e with a bag of
sand of total mass one and then distributes this sand equally to the neighbouring nodes
except t(e) = σ(i + 1), hence dividing the total sand in q equal piles. Repeating this
process along σ, one reaches σ(k) with having divided by q as many times as there are
edges between σ(i) and σ(k), namely d(σ(k), σ(i)) = |k− i|. From here 1/q of the mass

continues its travel along σ and the remaining q−1
q of the mass at σ(k) will constitute

the νe-measure of Ωσ
k .

Lemma 8 (Proposition 4.3.4, [7]). Suppose e is aligned with [x, y] and parametrized by
i ∈ Z, then the νe-measure of Ωσ

k is given by:

(5) νe(Ω
σ
k) =

(q − 1)

q

{
q−|k−i| if k − i ≤ 0,

−q−(k−i)+1 if k − i > 0,

for all k ∈ Z. �
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To synthetize the right hand side, we define the following continuous real functions
g(x) = q−|x| (Figure 4) and

g 1
2
(x) =


g(x) if x ≤ 0,

1− 2x if 0 ≤ x ≤ 1,

−g(x− 1) if 1 ≤ x,

so that (5) becomes νe(Ω
σ
k) = (q−1)

q g 1
2
(k− i), for all k ∈ Z. The presence of the index 1

2

emphasizes the central symmetry of the graph of g 1
2

about (1
2 , 0) ∈ R2 (Figure 5).

Proposition 9 (Integration formula for parameter i). Let e be an edge parametrized
by i ∈ Z. Then the Poisson transform of B(x, y) evaluated at e is given by:

PB(x, y)(e) =
(q − 1)

q

∑
k∈Z

f(k)g 1
2
(k − i),

where f is the continuous piecewise affine function (of Figure 3) given by:

(6) f(x) =


d if x ≤ 0,

d− 2x if 0 ≤ x ≤ d,
−d if d ≤ x.

Proof. By construction B(x, y) is constant on Ωσ
k where it takes value f(k) thanks to

Section 2.1. We can apply countable additivity to integrate B(x, y) against νe,

PB(x, y)(e) =

∫
∂X

B(x, y) dνe =
∑
k∈Z

∫
Ωσk

B(x, y) dνe =
∑
k∈Z

f(k)νe(Ω
σ
k)

=
(q − 1)

q

∑
k∈Z

f(k)g 1
2
(k − i). �

Consider now an edge e with parameters (i, j). The adequate partition is obtained
similarly removing further the geodesic τ containing e and intersecting with the sets Ωσ

k .
More precisely, for every l ∈ Z, let

Ωτ
l :=

⊔
z∈S1(τ(l))
z 6=τ(l±1)

Ωτ(0)(z)

and Ωk,l := Ωσ
k ∩ Ωτ

l , for all k ∈ Z.
The tree X consists of the cross formed by σ and τ with rooted trees attached at the

nodes of σ or τ . Note Ωk,l is empty whenever l 6= j and k 6= i. When l = j, the set Ωk,j

is the boundary of the tree attached to σ(k) and for k = i the set Ωi,l is the boundary
of the tree attached to τ(i). This is provided (k, l) 6= (i, j); the branching at σ(i) = τ(j)
has various configurations depending on the valency of X. For instance if l > j, the set
Ωi,l is non-empty if and only if τ can indeed be extended to form a cross with σ, that is
if q ≥ 3. Finally the center node of the cross also have a tree attached with boundary
Ωi,j which is empty if and only if q = 3. This is fortunately covered by the last formula
of Lemma 10.

Intuitively, the mass spreads from e along τ following g 1
2

similarly to the previous

case. At the node σ(i) = τ(j), the mass entering σ is 2/q · g 1
2
(j) and spreads uniformly
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along σ in both directions according to the function h : R→ R of Figure 6. It is given
by:

h(x) =


g(x+ 1) if x ≤ −1,

1 if − 1 ≤ x ≤ 1 and x 6= 0,

0 if x = 0,

g(x− 1) if x ≥ 1,

with a discontinuity at x = 0 introduced for later convenience.

Lemma 10 (Proposition 4.4.6, [7]). The νe-measure of Ωk,l is given by:

νe(Ωk,l) = 0 for all k 6= i and l 6= j,

νe(Ωi,l) =
(q − 1)

q
· g 1

2
(l)

(
= νe(Ω

τ
l )
)
, for all l 6= j,

νe(Ωk,j) =
(q − 1)

q
· g 1

2
(j) · 1

q
· h(k − i), for all k 6= i,

νe(Ωi,j) =
(q − 3)

q
· g 1

2
(j).

Proposition 11 (Integration formula for parameter (i, j)). Let e be an edge with pa-
rameters (i, j), then PB(x, y)(e) is given by:

PB(x, y)(e) = −2

q
f(i)g 1

2
(j) +

(q − 1)

q2
g 1

2
(j)

(∑
k∈Z

f(k)h(k − i)

)
.

Proof. We apply countable additivity to the partition {Ωk,l | k, l ∈ Z}.

PB(x, y)(e) =

∫
∂X

B(x, y) dνe =
∑
k,l∈Z

∫
Ωl,k

B(x, y) dνe =
∑
k,l∈Z

f(k)νe(Ωl,k)

= f(i)νe(Ωi,j) +
∑
k 6=i

f(k)νe(Ωk,j) + f(i)
∑
l 6=j

νe(Ωi,l)

=
(q − 3)

q
f(i)g 1

2
(j) +

(q − 1)

q2
g 1

2
(j)
∑
k∈Z

f(k)h(k − i) +
(q − 1)

q
f(i)

∑
l 6=j

g 1
2
(l).

One concludes using
∑

l 6=j g 1
2
(l) = −g 1

2
(l). �

Remark 12. When q = 2, the set Ωj,i is empty and the ray τ : (−∞, j]→ X cannot be
extended further to form a cross with σ. In that case the above becomes

PB(x, y)(e) =
∑
k 6=i

f(k)νe(Ωk,j) + f(i)
∑
l<j

νe(Ωi,l) =
∑
k 6=i

f(k)νe(Ωk,j)− f(i)
∑
l≥j

νe(Ωl,i)

This integration formula equals that of Proposition 11 provided
∑

l≥j νe(Ωi,l) = g 1
2
(j),

which holds thanks to
∑

l≥j g 1
2
(l) = q · g 1

2
(j) (and q = 2).

Let P (i) denote the value of the right hand side in Proposition 9 and P (i, j) that of
Proposition 11. We use the notation 〈·, ·〉 for the standard pairing of `p(Z) and its dual
`q(Z) and τ the regular representation of Z on `p(Z). The integration formulae for P (i)
and P (i, j) can be written as:

(7) P (i) =
(q − 1)

q
〈f, τig 1

2
〉 and P (i, j) = −2

q
f(i)g 1

2
(j) +

(q − 1)

q2
g 1

2
(j)〈f, τih〉.
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3.3. Summation. In the last section, we obtain the following bounds. On the one
hand, for an edge e parametrized by i ∈ Z,

(8) |PB(x, y)(e)| = |P (i)| ≤


2

(q−1)q
−(|i|−1) if i < 0,

2(q+1)
(q−1) if 0 ≤ i < d,

2
(q−1)q

−(i−d−1) if d ≤ i.

On the other hand, if e is an edge parametrized by (i, j), with j ≥ 1, then

(9) |PB(x, y)(e)| = |P (i, j)| ≤

{
2

(q−1)q
−(i+j−1) if 1 ≤ i ≤ d/2,

2
(q−1)q

−(d−i+j−1) if d/2 ≤ i ≤ d− 1.

We now use them to prove (4) hence the upper bound of Theorem 2.

Proof of the upper bound of Theorem 2. Case (A). The number n(i) of edges aligned
with [x, y] with parameter i is obtained in Lemma 7. It only accounts for the preferred
orientations, hence the factor 1/2 below.

1

2

∑
e aligned
with [x,y]

PB(x, y)(e)2 =
∑
i∈Z

n(i)P (i)2

≤
(

2(q + 1)

(q − 1)

)2

· d(x, y) + 2

(
2

(q − 1)

)2∑
i>0

qiq−2(i−1)

=
4(q + 1)2

(q − 1)2
· d(x, y) +

8q2

(q − 1)3
. �

Case (B). The graph of the right hand side of (9) is symmetric with respect to the axis
y = d/2, meaning it is invariant under i 7→ d − i. In fact we show in Section 4.2 that
i 7→ P (i, j) satisfies the same of symmetry. This allows us to only sum over 1 ≤ i ≤ d/2.
Similarly to the previous proof:

1

2

∑
e not aligned

with [x,y]

PB(x, y)(e)2 =
∑

1≤i≤d−1
j≥1

n(i, j)P (i, j)2 ≤ 2
∑

1≤i≤d/2
j≥1

n(i, j)P (i, j)2

= 2
∑

1≤i≤d/2
j≥1

(q − 1)qj−1P (i, j)2

≤ 2(q − 1)
∑

1≤i≤d/2
j≥1

qj−1

(
2

(q − 1)
q−(i+j−1)

)2

=
8

(q − 1)

∑
1≤i≤d/2
j≥0

q−2iq−j

≤ 8

(q − 1)

∑
j≥0

q−j
∑
i≥0

q−2i =
8q3

(q − 1)3(q + 1)
. �
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4. Symmetry and spherical rearrangement

This section presents the averaging methods which, applied to the integration for-
mulae (7), yield the estimates (8) and (9). The series 〈f, τig 1

2
〉 and 〈f, τih〉 in (7) are

manipulated to obtain a spherical rearrangement of their terms.
Recall that σ is a geodesic with x = σ(0) and y = σ(d), so that the barycenter of

[x, y] corresponds to σ(d/2). As mentioned in the introduction, the Poisson transform of
B(x, y) is symmetric about σ(d/2). For edges e of type (i, j), the map i 7→ P (i, j) indeed
shows a symmetry (with a sign) around d/2, notably because σ(i) is the projection of
e onto [x, y]. On the other hand, the parameter i of an edge e aligned with [x, y]
corresponds to its origin o(e) = σ(i). Therefore the symmetry around the barycenter
translates into i 7→ P (i) being symmetric about (d− 1)/2, see Proposition 15.

To concretize the above discussion, we introduce some notations. For a real valued
function f : R→ R (or f : Z→ R), we write τtf(x) = f(x− t), f̌(x) = (f )̌ (x) = f(−x)
and (τ̌tf)(x) = f(x+ t) = τ−tf(x). The operators τt and ˇ correspond to the action of
t and −1 for the canonical linear action of Isom(R) = R o {±1} (resp. Z o {±1}) onto
the space of functions over R (resp. over Z). Denote further 〈f1, f2〉 =

∑
k∈Z f1(k)f2(k)

when the series is well defined, e.g. absolutely convergent. We shall use the following
identities freely:

〈τtf1, τtf2〉 = 〈f1, f2〉 = 〈f̌1, f̌2〉, ˇ̌f = f, and (τtf )̌ = τ−tf̌ = τ̌tf̌ .

Definition 13. A function f : R → R (or f : Z → R) is said to have a (central)
symmetry about h ∈ R (resp. h ∈ 1

2Z) if its graph is invariant under the central symmetry

about (h, 0) ∈ R2. Equivalently f satisfies −f̌ = τ−2hf .
We say that f has an (axial) symmetry about y = h if its graph is invariant under the

reflexion through the vertical line y = h. Equivalently f satisfies f̌ = τ−2hf .

The following is clear from the graphs of Figure 3–6.

Lemma 14. The functions f , g, g 1
2
, and h defined in Section 3.2 satisfy

−f̌ = τ−df (symmetry about d/2),

ǧ = g and ȟ = h (symmetry about y = 0),

−ǧ 1
2

= τ−1g 1
2

(symmetry about 1/2).

When studying P (i, j), there is no obstacle to work with arbitrary parameters i, j ∈ Z.

Proposition 15. Let Pj(i) := P (i, j), then

P̌ = τ−d+1P (symmetry about y = (d− 1)/2),(10)

−P̌j = τ−dPj (symmetry about d/2).(11)

Proof. Using the above and (7), the following computation

q

q − 1
P̌ (i) = 〈f, τ−ig 1

2
〉 = 〈f, τ̌ig 1

2
〉 = 〈f̌ , τiǧ 1

2
〉 = 〈τ−df, τi−1g 1

2
〉 = 〈f, τd+i−1g 1

2
〉

=
q

q − 1
P (d+ i− 1) =

q

q − 1
τ−d+1P (i),

shows P̌ = τ−d+1P which means P is symmetric about y = (d − 1)/2. Similarly one
obtains −P̌j = τ−dPj . �
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0

d
d
2

d

−d

f

Figure 3. Graph of f .

0

g

1

1

Figure 4. Graph of g.

0

g 1
2

1

1

Figure 5. Graph of g 1
2
.

0

h

1

1

Figure 6. Graph of h.

Corollary 16. Let e be an edge with parameter i ∈ Z, then PB(x, y)(e) = PB(x, y)(e′)
for all edge e′ with parameters d − i − 1. On the other hand if e has parameter (i, j),
with 1 < i < d and j ≥ 1, then PB(x, y)(e) = −PB(x, y)(e′) for all edge e′ with
parameters (d− i, j) �

4.1. Averaging P . This section establishes the bound (8) using an average of P . The
symmetry of P is encoded by equation (10) of Proposition 15, which can also be written
P = τd−1P̌ . The mean of the two sides of the latter is

P (i) =
1

2
(P (i) + P (d− i− 1)) =

q − 1

2q

(
〈f, τig 1

2
〉+ 〈f, τd−i−1g 1

2
〉
)
.

By transferring the operators τ to the left side of the pairing, one obtains

P (i) =
q − 1

2q

(
〈τ−if, g 1

2
〉+ 〈τ−d+i+1f, g 1

2
〉
)
.

Consider the linear operator Ti := 1
2(τ−i + τ−d+i+1); the previous equation becomes

(12) P (i) =
q − 1

q
〈Tif, g 1

2
〉.

This has the advantage of being computable, thanks to f being piecewise affine, yielding
a simple expression for Tif . Since f has a symmetry around d/2, one verifies that Tif
has one around 1/2. Indeed,

(Tif )̌ =
1

2
((τ−if )̌ + (τ−d+i+1f )̌ ) =

1

2

(
τ̌−if̌ + τ̌−d+i+1f̌

)
= −1

2
(τiτ−df + τd−i−1τ−df) = −1

2
τ−1 (τ−d+i+1f + τ−if) = −τ−1Tif.

This symmetry is key to proving
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Proposition 17. With the above notations,

(13) P (i) =
2(q − 1)

q
‖Tif · g 1

2
‖`1(N∗).

Proof. Translates of f change sign only at their center of symmetry, so that the same
holds for Tif which in turn has the same sign as g 1

2
. Precisely, Tif(x) ≥ 0 for x ≤ 1/2

and Tif(x) < 0 otherwise. From (12), we have

q

q − 1
P (i) = 〈Tif, g 1

2
〉 (i)

= 〈|Tif |, |g 1
2
|〉 = ‖Tif · g 1

2
‖`1(Z)

(ii)
= 2‖Tif · g 1

2
‖`1(N∗),

where (i) follows from Tif and g 1
2

having the same sign and (ii) from the fact that the

pointwise product preserves the shared symmetry about 1/2. �

Proposition 18 (Proposition 4.3.18, [7]). For every k ∈ N∗, the average

(Tif)(k) =
1

2
(f(k + i) + f(k + d− i− 1))

is non-negative and bounded above by:

(14) Tif(k) ≤


(k − |i|) · 1[−i,∞)(k) if i < 0,

2(k − 1
2) if 0 ≤ i < d,

(k − (i− d+ 1)) · 1[−d+i+1,∞)(k) if d ≤ i.

Therefore the `1(N∗)-norm of the pointwise product of Tif and g 1
2

is bounded by:

(15) ‖Tif · g 1
2
‖`1(N∗) ≤


q

(q−1)2
q−(|i|−1) if i < 0,

q(q+1)
(q−1)2

if 0 ≤ i < d,
q

(q−1)2
q−(i−d) if d ≤ i,

which, applied to (13), proves (8).

Proof. For the first part (14), one writes f as a sum of affine and constant functions each
supported on an interval determined by the two cut points of f , namely 0 and d. Then
one may compute explicitly the translates of f and Tif in terms of affine and indicator
functions. As a result of some cancelations, Tif vanishes on the interval [1/2,−i] when
i < 0 and on [1/2,−d+ i+ 1] when d ≤ i. It follows that |Tif | is bounded by the affine
functions of (14). The bounds are asymptotically sharp in the sense that |Tif | converge
pointwise to them as d → ∞. The second part (15) is deduced by direct computations
by plugging (14) into (13). �

This spherical rearrangement for the edges of [x, y] is sufficient to prove the lower
bound of Theorem 2.

Proof of the lower bound of Theorem 2. As mentioned in the previous proof, Tif does
not vanish around 1/2 when 0 ≤ i < d. In fact, for such parameters i, one sees that
|Tif(k)| ≥ 1 for all k ∈ Z. Hence by (13),

PB(x, y)(e) =
2(q − 1)

q
‖Tif · g 1

2
‖`1(N∗) ≥

2(q − 1)

q
‖g 1

2
‖`1(N∗) = 2,

for all edges of [x, y] pointing from x to y. Applying Cauchy-Schwarz to the indicator
function of the later edges and PB(x, y) yields∑

e⊂[x,y]

PB(x, y)(e) ≤
√
d‖PB(x, y)‖.
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The left hand side is at least 2d, hence the result. �

4.2. Averaging Pj = P (−, j). We proceed similarly to last section in order to establish
(9), with a twist in complexity due to the particular form of the integration formula (7)
for P (i, j). We may focus on the case 1 ≤ i ≤ d/2 thanks to the symmetry (11) of Pj .

The latter translates into Pj = −τdP̌j . Therefore,

Pj(i) =
1

2
(Pj(i)− Pj(d− i)) = −2

q
f(i)g 1

2
(j) +

(q − 1)

2q2
g 1

2
(j) (〈f, τih〉 − 〈f, τd−ih〉)

= −2

q
f(i)g 1

2
(j) +

(q − 1)

2q2
g 1

2
(j)〈τ−if − τi−df, h〉.

We consider the linear operator T̃i := 1
2(τ−i − τi−d) to rewrite the above as:

(16) Pj(i) = −2

q
f(i)g 1

2
(j) +

(q − 1)

q2
g 1

2
(j)〈T̃if, h〉.

Here T̃if is symmetric with respect to the axis y = 0; for one quickly verifies (T̃if )̌ = T̃if .

Proposition 19 (Section 4.4.1, [7]). For 1 ≤ i ≤ d/2, we have T̃if ≥ 0 and

〈T̃if, h〉 = 2‖T̃if · h‖`1(N∗).

Moreover

(17) Pj(i) =
−2q−i

q − 1
g 1

2
(j)(1− q−f(i)),

Since f(i) = d− 2i ≥ 0, the absolute value of (17) yields (9).

Proof. We proceed as in Proposition 18. One may write T̃if = 1
2(τ−if−τi−df) explicitly

as a piecewise affine map and observe its non-negativeness on its support [i − d, d − i].
Consequently,

〈T̃if, h〉 = ‖T̃if · h‖`1(Z) = 2‖T̃if · h‖`1(N∗),

where in the last equation we used that h(0) = 0 and the symmetry about y = 0. For
the second part, we use additional notations:

∆(i) := ‖T̃if · h‖`1(N∗) and Σ(i) := ∆(i)− q

q − 1
f(i),

so that Pj can be written as:

(18) Pj(i) =
2(q − 1)

q2
g 1

2
(j)

(
∆(i)− q

q − 1
f(i)

)
=

2(q − 1)

q2
g 1

2
(j)Σ(i).

For k ≥ 0, the function T̃if is more explicitly described on its support by:

T̃if(k) =

{
d− 2i = f(i) if 0 ≤ k ≤ i,
d− i− k = f(i)− (k − i) if i ≤ k ≤ d− i.

Therefore

∆(i) = ‖T̃if · h‖`1(N∗) =

d−i∑
k=1

f(i)q−k+1 −
d−i∑
k=i

(k − i)q−k+1

= f(i)
d−i∑
k=1

q−k+1 − q−i
f(i)∑
k=0

kq−k+1.
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We set x := q−1 and plug the previous equation into Σ(i):

Σ(i) = ∆(i)− 1

1− x
f(i) = f(i)

d−i∑
k=1

xk−1 − xi
f(i)∑
k=0

kxk−1 − 1

1− x
f(i)

= f(i)
1− xd−i

1− x
− xi

(1− x)2

(
f(i)xf(i)+1 − (f(i) + 1)xf(i) + 1

)
− 1

1− x
f(i)

= f(i)
−xd−i

1− x
− xi

(1− x)2

(
f(i)xf(i)+1 − (f(i) + 1)xf(i) + 1

)
= f(i)

−xixf(i)

1− x
− xi

(1− x)2

(
f(i)xf(i)+1 − (f(i) + 1)xf(i) + 1

)
=

−xi

(1− x)2

(
f(i)xf(i)(1− x) + f(i)xf(i)+1 − (f(i) + 1)xf(i) + 1

)
=

−xi

(1− x)2

(
−xf(i) + 1

)
=
−q2q−i

(q − 1)2

(
1− q−f(i)

)
.

Finally (18) becomes

Pj(i) =
2(q − 1)

q2
g 1

2
(j)Σ(i) =

2(q − 1)

q2
g 1

2
(j)
−q2q−i

(q − 1)2

(
1− q−f(i)

)
=
−2q−i

q − 1
g 1

2
(j)(1− q−f(i)),

as desired. �
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